首页> 外文OA文献 >Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science
【2h】

Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

机译:束缚编队构型:满足大孔径和干涉测量科学的科学目标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.
机译:随着哈勃太空望远镜的成功,很明显,每当成像分辨率提高时,科学和发现的新领域就会发展。对于主要在可见光谱和近可见光谱中工作的HST,这意味着设计,制造和发射直径约三米的主镜。传统思维告诉我们,要想在地球和太空科学应用中实现更长波长分辨率的可比提高,就需要相应增加主镜的尺寸。对于亚毫米范围内的波长,将需要具有有效直径超过一公里的非常大的望远镜,以获得高质量的角分辨率。实际上,如此大的单个孔径实际上是不可能的。幸运的是,这样的大孔可以合成构造。可能可以使用精确排列的3到3米直径的反射镜来收集这些较长波长的光,从而不仅可以进行非常大的虚拟孔径科学研究,而且还可以进行高分辨率干涉测量。为了确保最长的任务持续时间,将需要使用系留航天器的系统来减轻对大量推进剂的需求。自旋稳定的栓系结构可能会满足这些要求。已经提出了几种可能满足空间科学界需求的配置。本文讨论了其中两个,权衡了每个概念的相对优缺点。最终目标是确定一种结构,该结构结合了结构,系绳和编队飞行的最佳特征,以满足雄心勃勃的要求,以使未来的大型合成孔径和干涉测量科学任务取得成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号